# Chapter 3

# Software engineering

# Software Processes

## **Topics covered:**

- ♦ Software process models
- ❖ Process activities
- Coping with change
- ♦ Process improvement

## The software process

- A structured set of activities required to develop a software system.
- Many different software processes but all involve:
- Specification defining what the system should do;
- Design and implementation defining the organization of the system and implementing the system;
- Validation checking that it does what the customer wants;
- **Evolution** changing the system in response to changing customer needs.
- A software process model is an abstract representation of a process. It presents a description of a process from some particular perspective.

## **Software process descriptions**

• When we describe and discuss processes, we usually talk about the activities in these processes such as specifying a data model, designing a user interface, etc. and the ordering of these activities.

- Process descriptions may also include:
- Products, which are the outcomes of a process activity;
- Roles, which reflect the responsibilities of the people involved in the process;
- Pre- and post-conditions, which are statements that are true before and after a process activity has been enacted or a product produced.

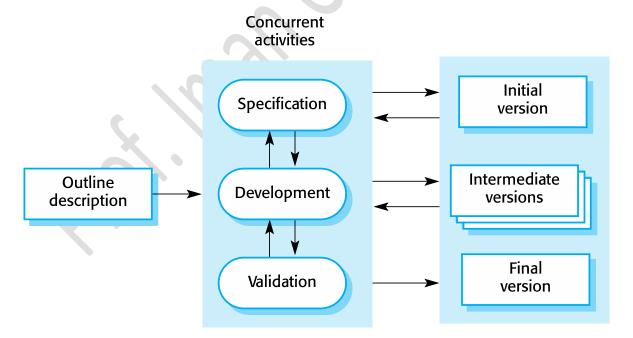
# Software process models

- ♦ The waterfall model
  - Plan-driven model. Separate and distinct phases of specification and development.
- ♦ Incremental development
  - Specification, development and validation are interleaved. May be plan-driven or agile.
- ♦ Integration and configuration
  - The system is assembled from existing configurable components. May be plandriven or agile.
- ❖ In practice, most large systems are developed using a process that incorporates elements from all of these models.

# The waterfall model

♦ There are separate identified phases in the waterfall model as described in chapter 2.

## Waterfall model problems


- ❖ Inflexible partitioning of the project into distinct stages makes it difficult to respond to changing customer requirements.
- Therefore, this model is only appropriate when the requirements are well-understood and changes will be fairly limited during the design process.
- Few business systems have stable requirements.

## Prof. Iman Qays Abduljaleel

- ♦ The waterfall model is mostly used for large systems engineering projects where a system is developed at several sites.
- ❖ In those circumstances, the plan-driven nature of the waterfall model helps coordinate the work.

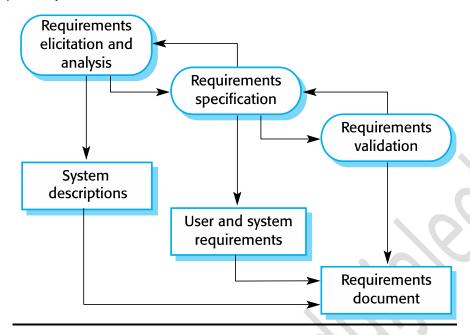
# **Incremental development**

- ♦ The cost of accommodating changing customer requirements is reduced.
  - The amount of analysis and documentation that has to be redone is much less than is required with the waterfall model.
- ♦ It is easier to get customer feedback on the development work that has been done.
  - Customers can comment on demonstrations of the software and see how much has been implemented.
- ♦ More rapid delivery and deployment of useful software to the customer is possible.
  - Customers are able to use and gain value from the software earlier than is possible with a waterfall process.



## **Incremental development problems**

- ♦ The process is not visible.
  - Managers need regular deliverables to measure progress. If systems are developed quickly, it is not cost-effective to produce documents that reflect every version of the system.
- ♦ System structure tends to degrade as new increments are added.
  - Unless time and money is spent on refactoring to improve the software, regular change tends to corrupt its structure. Incorporating further software changes becomes increasingly difficult and costly.


#### **Integration and configuration**

- ♦ Based on software reuse where systems are integrated from existing components or application systems (sometimes called COTS -Commercial-off-the-shelf) systems).
- ♦ Reused elements may be configured to adapt their behaviour and functionality to a user's requirements
- ♦ Reuse is now the standard approach for building many types of business system

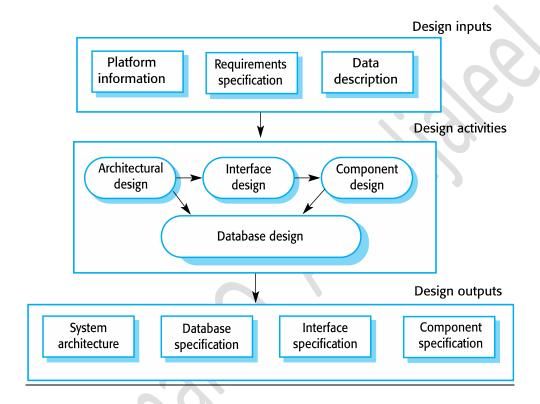
#### **Process activities**

- Real software processes are inter-leaved sequences of technical, collaborative and managerial activities with the overall goal of specifying, designing, implementing and testing a software system.
- The four basic process activities of specification, development, validation and evolution are organized differently in different development processes.
- For example, in the waterfall model, they are organized in sequence, whereas in incremental development they are interleaved.

#### The requirements engineering process



# **Software specification**


- ♦ The process of establishing what services are required and the constraints on the system's operation and development.
- ♦ Requirements engineering process
- ♦ Requirements elicitation and analysis
- ♦ What do the system stakeholders require or expect from the system?
- ♦ Requirements specification
- ♦ Defining the requirements in detail
- ♦ Requirements validation
- ♦ Checking the validity of the requirements

## Software design and implementation

- → The process of converting the system specification into an executable system.
- ♦ Software design
  - Design a software structure that realises the specification;

- → Implementation
  - Translate this structure into an executable program;
- ♦ The activities of design and implementation are closely related and may be inter-leaved.

## A general model of the design process



# Design activities

- ♦ Architectural design, where you identify the overall structure of the system, the principal components (subsystems or modules), their relationships and how they are distributed.
- → Database design, where you design the system data structures and how these are to be represented in a database.
- ❖ Interface design, where you define the interfaces between system components.
- ♦ Component selection and design, where you search for reusable components. If unavailable, you design how it will operate.

#### **Software validation**

- ♦ Verification and validation (V & V) is intended to show that a system conforms to its specification and meets the requirements of the system customer.
- ♦ Involves checking and review processes and system testing.
- ❖ System testing involves executing the system with test cases that are derived from the specification of the real data to be processed by the system.
- → Testing is the most commonly used V & V activity.

# **Stages of testing**

# ♦ Component testing

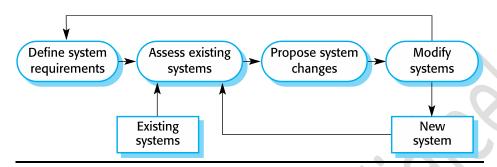
- Individual components are tested independently;
- Components may be functions or objects or coherent groupings of these entities.

## ♦ System testing

Testing of the system as a whole. Testing of emergent properties is particularly important.

# ♦ Customer testing

• Testing with customer data to check that the system meets the customer's needs.




## **Software evolution**

- ♦ Software is inherently flexible and can change.
- ♦ As requirements change through changing business circumstances, the software that supports the business must also evolve and change.

♦ Although there has been a demarcation between development and evolution (maintenance) this is increasingly irrelevant as fewer and fewer systems are completely new.

# **System evolution**

